BEITRDE: ZH%Em 2019/2/18 T47:15

[

In [1: | #ZIMDBEESE
from keras.datasets import imdb
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

Using TensorFlow backend.

In [2]: train_data[0]

Out[2]: [1,
14,
22,
16,
43,
530,
973,
1622,
1385,
65,
458,
4468,
66,
3941,
4,
173,
36,
256,
5,

In [3]: train_labels

Out[3]: array([1, 0, O, ..., 0, 1, 0])

In [4]: max([max(sequence) for sequence in train_data])

Out[4]: 9999

In [B]: | #Z5/#ZF51E 1
word_index = imdb.get_word_index()
reverse_word_index = dict(
[(value, key) for (key, value) in word_index.items()])
decoded_review = ' '.join(
[reverse_word_index.get(i — 3, '?') for i in train_data[0]]) #Z&—7“1Fit

http://localhost:8888/notebooks/pythonTest/deep-learning-with-python-notebooks-test/EB g R D E: oA ipynb F10 (67T

[

BEITRDE: ZHHER[M 2019/2/18 T47:15

In [6]: decoded_review

Out[6]: "? this film was just brilliant casting location scenery story direction everyone's really s
uited the part they played and you could just imagine being there robert ? is an amazi
ng actor and now the same being director ? father came from the same scottish islan
d as myself so i loved the fact there was a real connection with this film the witty rem
arks throughout the film were great it was just brilliant so much that i bought the film
as soon as it was released for ? and would recommend it to everyone to watch and th
e fly fishing was amazing really cried at the end it was so sad and you know what they
say if you cry at a film it must have been good and this definitely was also ? to the tw
o little boy's that played the ? of nhorman and paul they were just brilliant children are
often left out of the ? list i think because the stars that play them all grown up are suc
h a big profile for the whole film but these children are amazing and should be praised
for what they have done don't you think the whole story was so lovely because it was
true and was someone's life after all that was shared with us all"

In [7]: | ##HE@EL
import numpy as np
def vectorize_sequences(sequences, dimension=10000):
results= np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):
results[i, sequence] = 1.
return results

x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

In [8]: x_train[0]
Out[8]: array([O., 1., 1., ..., 0., 0., 0.])

In [9]: | #tnEMEM
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')

In [10]: ##uiZpi%% R E X
HEER Mrelu A A 1721E)70
HEEE “JE4ETFO, 1/X/EIA
from keras import models
from keras import layers
model = models.Sequentiall()
model.add(layers.Dense(16, activation="relu’, input_shape=(10000,)))
model.add(layers.Dense(16, activation="relu'))
model.add(layers.Dense(1, activation='sigmoid'))
#relu TA1E/FF sigmoid (EE1E/EHEZI0, 11X EA

In [(1]: | ##KR2L h1E 28 161T JiF e
#
model.compile(optimizer='rmsprop’, loss='binary_crossentropy', metrics=['accuracy'])

http://localhost:8888/notebooks/pythonTest/deep-learning-with-python-notebooks-test/EB g R D E: oA ipynb $F270 (#67)

BREWRDE: ZoREM 2019/2/18 T47:15

(5

In [12]: | #M V252806 70 B2 1 30 1IF 55
x_val = x_train[:10000]
partial_x_train = x_train[10000:]

y_val = y_train[:10000]
partial_y_train = y_train[10000:]

In [13]: | #llZ/EHY
model.compile(optimizer='rmsprop’, loss='binary_crossentropy', metrics=['acc'])
history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validatior

Train on 15000 samples, validate on 10000 samples

Epoch 1/20

15000/15000 [============= = = ======] — 6s 425us/step — loss: 0.5086
— acc: 0.7815 — val_loss: 0.3793 - vaI _acc: 0.8688

Epoch 2/20

15000/15000 [============= = = ======] — 55 356us/step — loss: 0.3004
— acc: 0.9049 - val_loss: 0.3002 - vaI _acc: 0.8897

Epoch 3/20

15000/15000 [==============================] — 6s 369us/step - loss: 0.2179
— acc: 0.9283 - val_loss: 0.3083 - vaI _acc: 0.8715

Epoch 4/20

15000/15000 [==============================] — 5s 348us/step - loss: 0.1751

— acc: 0.9437 - val_loss: 0.2839 - vaI _acc: 0.8838

Epoch 5/20

15000/15000 [==============================] — 4s 233us/step - loss: 0.1425
— acc: 0.9542 — val_loss: 0.2843 — vaI _acc: 0.8869

Epoch 6/20

15000/15000 [==============================] - 3s 229us/step - loss: 0.1150

— acc: 0.9651 - val_loss: 0.3157 - vaI _acc: O 8768

Epoch 7/20

15000/15000 [============= = = ======] — 4s 248us/step — loss: 0.0979
— acc: 0.9707 - val_loss: 0.3129 - vaI _acc: 0.8844

Epoch 8/20

15000/15000 [============= = = ======] — 3s 222us/step — loss: 0.0806
— acc: 0.9765 — val_loss: 0.3859 — vaI _acc: 0.8655

Epoch 9/20

15000/15000 [============= = = ======] — 4s 246us/step — loss: 0.0659
— acc: 0.9821 - val_loss: 0.3635 — vaI _acc: 0.8781

Epoch 10/20

15000/15000 [==============================] - 4s 234us/step - loss: 0.0555
— acc: 0.9853 - val_loss: 0.3844 — vaI _acc: 0.8791

Epoch 11/20

15000/15000 [==============================] — 3s 215us/step - loss: 0.0450
— acc: 0.9889 - val_loss: 0.4167 - vaI _acc: 0.8767

Epoch 12/20

15000/15000 [============= = = ======] — 4s 256us/step — loss: 0.0384
— acc: 0.9913 - val_loss: 0.4505 — vaI _acc: 0.8697

Epoch 13/20

15000/15000 [============= = = ======] — 4s 270us/step - loss: 0.0297
— acc: 0.9929 - val_loss: 0.4701 - vaI _acc: 0.8731

Epoch 14/20

http://localhost:8888/notebooks/pythonTest/deep-learning-with-python-notebooks-test/EB g R D E: oA ipynb F 3 (H67)

BEWRDE: ZHEKER

[

— acc: 0.9949 - val_loss
Epoch 15/20

— acc: 0.9979 - val_loss
Epoch 16/20

— acc: 0.9968 — val_loss
Epoch 17/20

— acc: 0.9995 — val_loss
Epoch 18/20

— acc: 0.9975 — val_loss
Epoch 19/20

— acc: 0.9996 - val_loss
Epoch 20/20

— acc: 0.9999 - val_loss

In [14]:
import matplotlib.pyplot

: 0.7039 - val_acc: 0.8652

IR B IRRFI T FRER

as plt

history_dict = history.history
loss_values = history_dict['loss']
val_loss_values = history_dict['val_loss']

epochs = range(1, len(loss_values) + 1)

plt.plot(epochs, loss_values, 'bo', label='Training loss')
plt.plot(epochs, val_loss_values, 'b', label="'Valifation loss')

plt.title('Training and vali

plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

<Figure size 640x480 wi

In [15]: history_dict.keys()

Out[15]:

http://localhost:8888/notebooks/pythonTest/deep-learning-with-python-notebooks-test/B g RS

idation loss')

th 1 Axes>

dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])

ZoZEEB.ipynb

2019/2/18 TF7:15

======] — 5s 313us/step - loss: 0.0170

======] — 3s 228us/step - loss: 0.0117

======] - 5s 305us/step - loss: 0.0243

======] — 55 333us/step - loss: 0.0176

======] — 4s 247us/step - loss: 0.0093

======] — 4s 300us/step - loss: 0.0061

======] - 5s 353us/step - loss: 0.0045

BEITRDE: ZHHER[M 2019/2/18 T47:15

[

In [16]): | #2231l 25:48 E FIF0 U/ /E
plt.clf()
acc = history_dict['acc']
val_acc = history_dict['val_acc']

plt.plot(epochs, acc, 'bo’, label="Training acc')
plt.plot(epochs, val_acc, 'b', label="Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend()

plt.show()

Training and validation accuracy

100 -
L]
[] °*
[]
. L]
0.95 °
°

-
g 0.90 - b
5
|¥)
¥ /\/\/\f\’_\—\f\/

0.85 A1

0.80 - ® Training acc

o - Validation acc

T T T T T

25 5.0 75 100 125 150 175 200
Epochs

In [17]: results = model.evaluate(x_test, y_test)
results

=] — 7s 271us/step

25000/25000 [=========

Out[17]: [0.7766584446382523, 0.85068]

In [18]: | #FT 4T (E ETAY BT BE 1%
model.predict(x_test)

Out[18]: array([[0.00921098],
[0.9999999],
[0.95997983],

[0.001115 1],

[0.00480793],
[0.6486915]], dtype=float32)

http://localhost:8888/notebooks/pythonTest/deep-learning-with-python-notebooks-test/EB g R D E: oA ipynb FE50 (6

FRR D ZHHEEM 2019/2/18 T47:15

[

#
o
=
—
I«

>

o
b=

http://localhost:8888/notebooks/pythonTest/deep-learning-with-python-notebooks-test/EB g R D E: oA ipynb

